自监督学习的一些文章
# 一些文章
# 1、Proxy task 的设计
# 1.1 基于先验知识的设计
1.1.1 利用 Motion propagation 来设计 proxy task
Self-Supervised Learning via Conditional Motion Propagation (opens new window)
1.1.2 利用 Motion Prediction 来设计 proxy task
Dense Optical Flow Prediction From a Static Image (opens new window)
# 1.2 基于连贯性的设计
1.2.1 利用 Jigsaw Puzzles (物体的语义连贯性)来设计proxy task
Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles (opens new window)
1.2.2 利用视频中物体运动的时间连贯性来设计 proxy task
Shuffle and Learn: Unsupervised Learning using Temporal Order Verification (opens new window)
# 1.3 基于数据内部结构的设计
目前很火的基于contrastive learning的方法,包括NPID, MoCo, SimCLR等,我们可以将它们统一为instance discrimination [6]任务。如下图,这类任务通常对图片做各种变换,然后优化目标是同一张图片的不同变换在特征空间中尽量接近,不同图片在特征空间中尽量远离。
1.3.1 Momentum Contrast for Unsupervised Visual Representation Learning (MoCov1)
Momentum Contrast for Unsupervised Visual Representation Learning (opens new window)
1.3.2 Improved Baselines with Momentum Contrastive Learning (Mocov2)
Improved Baselines with Momentum Contrastive Learning (opens new window)
1.3.3 A Simple Framework for Contrastive Learning of Visual Representations (SimCLRv1)
A Simple Framework for Contrastive Learning of Visual Representations (opens new window)
1.3.4 Big Self-Supervised Models are Strong Semi-Supervised Learners (SimCLRv2)
Big Self-Supervised Models are Strong Semi-Supervised Learners (opens new window)
这一篇本质上应该是算半监督学习
1.3.5 Bootstrap your own latent: A new approach to self-supervised Learning (BYOL)
Bootstrap your own latent: A new approach to self-supervised Learning (opens new window)
# 1.4 其他的设计
1.4.1利用 图像着色来设计 proxy task
Colorful Image Colorization (opens new window)
1.4.2 利用 Image Inpainting 来设计 proxy task
Context Encoders: Feature Learning by Inpainting (opens new window)
1.4.3 利用 Rotation Prediction 来设计 proxy task
Unsupervised Representation Learning by Predicting Image Rotations (opens new window)
1.4.4 利用 Instance Discrimination 来设计 proxy task
1.4.5利用 Counting 来设计 proxy task
1.4.6利用 Moving foreground segmentation 来设计 proxy task
1.4.7 利用Context Prediction 来设计 proxy task
Unsupervised Visual Representation Learning by Context Prediction (opens new window)
# 2、基于对比学习的文章
1.3.1 Momentum Contrast for Unsupervised Visual Representation Learning (MoCov1)
Momentum Contrast for Unsupervised Visual Representation Learning (opens new window)
1.3.2 Improved Baselines with Momentum Contrastive Learning (Mocov2)
Improved Baselines with Momentum Contrastive Learning (opens new window)
1.3.3 A Simple Framework for Contrastive Learning of Visual Representations (SimCLRv1)
A Simple Framework for Contrastive Learning of Visual Representations (opens new window)
1.3.4 Big Self-Supervised Models are Strong Semi-Supervised Learners (SimCLRv2)
Big Self-Supervised Models are Strong Semi-Supervised Learners (opens new window)
这一篇本质上应该是算半监督学习
1.3.5 Bootstrap your own latent: A new approach to self-supervised Learning (BYOL)
Bootstrap your own latent: A new approach to self-supervised Learning (opens new window)
1.3.6 Data-Efficient Image Recognition with Contrastive Predictive Coding (CPCv2)
Data-Efficient Image Recognition with Contrastive Predictive Coding (opens new window)
1.3.7 Unsupervised Learning of Visual Featuresby Contrasting Cluster Assignments (SwAV)
Unsupervised Learning of Visual Featuresby Contrasting Cluster Assignments (opens new window)
1.3.8 Exploring Simple Siamese Representation Learning(SimSiam)
Exploring Simple Siamese Representation Learning (opens new window)
1.3.9 Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised VisualRepresentation Learning(PixPro, CVPR 2021)
1.3.10 AdCo: Adversarial Contrast for Efficient Learning of Unsupervised Representations from Self-Trained Negative Adversaries(AdCo, CVPR 2021)
Date | Training Paradigm | Method | Backbone | Label fraction | Top-1 Accuracy |
---|---|---|---|---|---|
2019-11 | Semi Sup. | Noisy Student | EfficientNet(480M) | 100+extra | 88.4- |
- | Sup. | - | ResNet50(24M) | 100 | 76.5 |
2020-06 | Self Sup | SwAV | ResNet50(24M) | 0 | 75.3 |
2020-06 | Self Sup | BYOL | ResNet50(24M) | 0 | 74.3 |
2020-03 | Self Sup | Moco v2 | ResNet50(24M) | 0 | 71.1 |
2020-02 | Self Sup | SimCLR v1 | ResNet50(24M) | 0 | 69.3 |
2019-05 | Self Sup | CPCv2 | ResNet50(24M) | 0 | 63.8 |
2019-11 | Self Sup | Moco v1 | ResNet50(24M) | 0 | 60.6 |
# 3、参考文献
自监督学习(Self-Supervised Learning) 2018-2020年发展综述 (opens new window)
Self-Supervised Image Classification on ImageNet (opens new window)
Self-Supervised Image Classification on ImageNet (finetuned) (opens new window)
Self-supervised Learning: Generative or Contrastive (opens new window)
Self-supervised Learning: Generative or Contrastive 自监督学习2020综述 (opens new window)
A curated list of awesome self-supervised methods (opens new window)
4、参考代码
- 02
- README 美化05-20
- 03
- 常见 Tricks 代码片段05-12