Muyun99's wiki Muyun99's wiki
首页
学术搬砖
学习笔记
生活杂谈
wiki搬运
资源收藏
关于
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

Muyun99

努力成为一个善良的人
首页
学术搬砖
学习笔记
生活杂谈
wiki搬运
资源收藏
关于
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • 代码实践-目标检测

  • 代码实践-图像分割

  • 代码实践-自监督学习

    • 自监督学习的一些文章
      • 名词解释
      • 组会思路
    • 竞赛笔记-视觉竞赛

    • 框架解析-mmlab系列

    • 讲座记录-有意思的文章集合

    • 体会感悟-产品沉思录观后有感

    • 体会感悟-摄影

    • 系列笔记-

    • 系列笔记-乐理和五线谱

    • 系列笔记-爬虫实践

    • 系列笔记-Django学习笔记

    • 系列笔记-Git 使用笔记

    • 系列笔记-网站搭建

    • 系列笔记-图卷积网络

    • 课程笔记-MIT-NULL

    • 系列笔记-OpenCV-Python

    • 系列笔记-使用 Beancount 记账

    • 系列笔记-Python设计模式

    • 系列笔记-MLOps

    • 系列笔记-Apollo自动驾驶

    • 系列笔记-PaddlePaddle

    • 系列笔记-视频操作

    • Vue+Django前后端分离开发

    • 深度学习及机器学习理论知识学习笔记

    • PyTorch Tricks

    • 学习笔记
    • 代码实践-自监督学习
    Muyun99
    2021-03-24

    自监督学习的一些文章

    # 一些文章

    # 1、Proxy task 的设计

    # 1.1 基于先验知识的设计

    1.1.1 利用 Motion propagation 来设计 proxy task

    ​ Self-Supervised Learning via Conditional Motion Propagation (opens new window)

    1.1.2 利用 Motion Prediction 来设计 proxy task

    ​ Dense Optical Flow Prediction From a Static Image (opens new window)

    # 1.2 基于连贯性的设计

    1.2.1 利用 Jigsaw Puzzles (物体的语义连贯性)来设计proxy task

    ​ Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles (opens new window)

    1.2.2 利用视频中物体运动的时间连贯性来设计 proxy task

    ​ Shuffle and Learn: Unsupervised Learning using Temporal Order Verification (opens new window)

    # 1.3 基于数据内部结构的设计

    目前很火的基于contrastive learning的方法,包括NPID, MoCo, SimCLR等,我们可以将它们统一为instance discrimination [6]任务。如下图,这类任务通常对图片做各种变换,然后优化目标是同一张图片的不同变换在特征空间中尽量接近,不同图片在特征空间中尽量远离。

    1.3.1 Momentum Contrast for Unsupervised Visual Representation Learning (MoCov1)

    ​ Momentum Contrast for Unsupervised Visual Representation Learning (opens new window)

    1.3.2 Improved Baselines with Momentum Contrastive Learning (Mocov2)

    ​ Improved Baselines with Momentum Contrastive Learning (opens new window)

    1.3.3 A Simple Framework for Contrastive Learning of Visual Representations (SimCLRv1)

    ​ A Simple Framework for Contrastive Learning of Visual Representations (opens new window)

    1.3.4 Big Self-Supervised Models are Strong Semi-Supervised Learners (SimCLRv2)

    ​ Big Self-Supervised Models are Strong Semi-Supervised Learners (opens new window)

    ​ 这一篇本质上应该是算半监督学习

    1.3.5 Bootstrap your own latent: A new approach to self-supervised Learning (BYOL)

    ​ Bootstrap your own latent: A new approach to self-supervised Learning (opens new window)

    # 1.4 其他的设计

    1.4.1利用 图像着色来设计 proxy task

    ​ Colorful Image Colorization (opens new window)image-20210324001651999

    1.4.2 利用 Image Inpainting 来设计 proxy task

    ​ Context Encoders: Feature Learning by Inpainting (opens new window)

    ​ image-20210324001740370

    1.4.3 利用 Rotation Prediction 来设计 proxy task

    ​ Unsupervised Representation Learning by Predicting Image Rotations (opens new window)

    ​ image-20210324001249021

    1.4.4 利用 Instance Discrimination 来设计 proxy task

    1.4.5利用 Counting 来设计 proxy task

    1.4.6利用 Moving foreground segmentation 来设计 proxy task

    1.4.7 利用Context Prediction 来设计 proxy task

    ​ Unsupervised Visual Representation Learning by Context Prediction (opens new window)

    ​ image-20210324001226268

    # 2、基于对比学习的文章

    image-20210323235716715

    1.3.1 Momentum Contrast for Unsupervised Visual Representation Learning (MoCov1)

    ​ Momentum Contrast for Unsupervised Visual Representation Learning (opens new window)

    1.3.2 Improved Baselines with Momentum Contrastive Learning (Mocov2)

    ​ Improved Baselines with Momentum Contrastive Learning (opens new window)

    1.3.3 A Simple Framework for Contrastive Learning of Visual Representations (SimCLRv1)

    ​ A Simple Framework for Contrastive Learning of Visual Representations (opens new window)

    1.3.4 Big Self-Supervised Models are Strong Semi-Supervised Learners (SimCLRv2)

    ​ Big Self-Supervised Models are Strong Semi-Supervised Learners (opens new window)

    ​ 这一篇本质上应该是算半监督学习

    1.3.5 Bootstrap your own latent: A new approach to self-supervised Learning (BYOL)

    ​ Bootstrap your own latent: A new approach to self-supervised Learning (opens new window)

    1.3.6 Data-Efficient Image Recognition with Contrastive Predictive Coding (CPCv2)

    ​ Data-Efficient Image Recognition with Contrastive Predictive Coding (opens new window)

    1.3.7 Unsupervised Learning of Visual Featuresby Contrasting Cluster Assignments (SwAV)

    ​ Unsupervised Learning of Visual Featuresby Contrasting Cluster Assignments (opens new window)

    1.3.8 Exploring Simple Siamese Representation Learning(SimSiam)

    ​ Exploring Simple Siamese Representation Learning (opens new window)

    1.3.9 Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised VisualRepresentation Learning(PixPro, CVPR 2021)

    ​ paper: Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning (opens new window)

    ​ code: Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021 (opens new window)

    1.3.10 AdCo: Adversarial Contrast for Efficient Learning of Unsupervised Representations from Self-Trained Negative Adversaries(AdCo, CVPR 2021)

    ​ paper: AdCo: Adversarial Contrast for Efficient Learning of Unsupervised Representations from Self-Trained Negative Adversaries (opens new window)

    ​ code: AdCo: Adversarial Contrast for Efficient Learning of Unsupervised Representations from Self-Trained Negative Adversaries (opens new window)

    Date Training Paradigm Method Backbone Label fraction Top-1 Accuracy
    2019-11 Semi Sup. Noisy Student EfficientNet(480M) 100+extra 88.4-
    - Sup. - ResNet50(24M) 100 76.5
    2020-06 Self Sup SwAV ResNet50(24M) 0 75.3
    2020-06 Self Sup BYOL ResNet50(24M) 0 74.3
    2020-03 Self Sup Moco v2 ResNet50(24M) 0 71.1
    2020-02 Self Sup SimCLR v1 ResNet50(24M) 0 69.3
    2019-05 Self Sup CPCv2 ResNet50(24M) 0 63.8
    2019-11 Self Sup Moco v1 ResNet50(24M) 0 60.6

    # 3、参考文献

    • 自监督学习的一些思考 (opens new window)

    • 自监督学习(Self-Supervised Learning) 2018-2020年发展综述 (opens new window)

    • 自监督学习(Self-Supervised Learning)综述_1 (opens new window)

    • 自监督学习(Self-Supervised Learning)综述_2 (opens new window)

    • Contrastive Self-Supervised Learning (opens new window)

    • 「上帝视角」看对比自监督学习,SimCLR、CPC、AMDIM并无本质差异 (opens new window)

    • Self-Supervised Image Classification on ImageNet (opens new window)

    • Self-Supervised Image Classification on ImageNet (finetuned) (opens new window)

    • Self-supervised Learning: Generative or Contrastive (opens new window)

    • Self-supervised Learning: Generative or Contrastive 自监督学习2020综述 (opens new window)

    • A curated list of awesome self-supervised methods (opens new window)

    4、参考代码

    • A python library for self-supervised learning on images. (opens new window)

    • Self-Supervised Learning Toolbox and Benchmark (opens new window)

    上次更新: 2021/08/02, 21:04:52
    Multi-label 分类中如何计算 mAP
    名词解释

    ← Multi-label 分类中如何计算 mAP 名词解释→

    最近更新
    01
    Structured Knowledge Distillation for Semantic Segmentation
    06-03
    02
    README 美化
    05-20
    03
    常见 Tricks 代码片段
    05-12
    更多文章>
    Theme by Vdoing | Copyright © 2021-2023 Muyun99 | MIT License
    • 跟随系统
    • 浅色模式
    • 深色模式
    • 阅读模式
    ×