Muyun99's wiki Muyun99's wiki
首页
学术搬砖
学习笔记
生活杂谈
wiki搬运
资源收藏
关于
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

Muyun99

努力成为一个善良的人
首页
学术搬砖
学习笔记
生活杂谈
wiki搬运
资源收藏
关于
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • 论文摘抄

  • 论文阅读-图像分类

  • 论文阅读-语义分割

  • 论文阅读-知识蒸馏

  • 论文阅读-Transformer

  • 论文阅读-图卷积网络

  • 论文阅读-弱监督图像分割

    • Awesome weakly supervised semantic segmentation
    • Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation
    • Weakly-Supervised Image Semantic Segmentation Using Graph Convolutional Networks
    • Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation
    • Weakly-Supervised Semantic Segmentation via Sub-category Exploration
    • AffinityNet Learning Pixel level Semantic Affinity with Image level Supervision for Weakly Supervised Semantic Segmentation
    • Grad-CAM Visual Explanations from Deep Networks via Gradient-based Localization
    • Grad-CAM++ Improved Visual Explanations for Deep Convolutional Networks
    • Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised Semantic Segmentation
    • Embedded Discriminative Attention Mechanism for Weakly Supervised Semantic Segmentation
    • Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation
    • Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation
    • NoPeopleAllowed The Three-Step Approach to Weakly Supervised SemanticSegmentation
    • Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations
    • Learning Deep Features for Discriminative Localization
    • Convolutional Random Walk Networks for Semantic Image Segmentation
    • Learning random-walk label propagation for weakly-supervised semantic segmentation
    • Puzzle-CAM Improved localization via matching partial and full features
    • Learning Visual Words for Weakly-Supervised Semantic Segmentation
    • 区域擦除 | Object Region Mining with Adversarial Erasing A Simple Classification to Semantic Segmentation Approach
    • CAM 扩散 | Tell Me Where to Look Guided Attention Inference Network
    • Self-Erasing Network for Integral Object Attention
    • Transformer CAM|Transformer Interpretability Beyond Attention Visualization
    • GETAM Gradient-weighted Element-wise Transformer Attention Map for Weakly-supervised Semantic segmentation
    • Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation
      • Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation
  • 论文阅读-半监督图像分割

  • 论文阅读-带噪学习

  • 论文阅读-小样本学习

  • 论文阅读-自监督学习

  • 语义分割中的知识蒸馏

  • 学术文章搜集

  • 论文阅读-其他文章

  • 学术搬砖
  • 论文阅读-弱监督图像分割
Muyun99
2022-04-14

Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation

# Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation

# 作者:Zhaozheng Chen, Tan Wang, Xiongwei Wu, Xian-Sheng Hua, Hanwang Zhang, Qianru Sun

# 单位:SMU、NTU、DAMO

# 发表:CVPR 2022

# 摘要

BCE 是生成伪标签的关键,CAM 的一个像素可能会对应于原图的一个区域,所以很容易造成类别的误判。

给定一张图像,使用 CAM 来提取特每个单独类别的特征像素,使用 SCE (Softmax Cross-Entropy) 去学习另一个全连接层。

由于 SCE 的对比性质,像素相应被分解为不同的类别,因此预期的 mask 会更好。实验表明 ReCAM 不仅仅可以生成高质量的mask,还可以作为一种即插即用的组件到 CAM 的变体方法中去

# 阅读

# 论文的目的及结论

作者观察到有两个常见的缺陷:

  • 被激活为 A 类的 False Positive 像素,其通常实际标签是类别 B ,而不是背景
  • 属于 A 类的 False Negative 的像素被错误地标记为背景

关键现象

这些现象当使用 BCE loss 的时候尤为明显,BCE loss 并不会惩罚分错的某一个类,

# 论文的实验

BCE 和 SCE 分类性能相似,但是 CAM 的质量不一致

# 论文的方法

# 论文的背景

# 总结

# 论文的贡献
# 论文的不足
# 论文如何讲故事

# 参考资料

  • 论文:https://arxiv.org/abs/2203.00962
  • 代码:https://github.com/zhaozhengChen/ReCAM
上次更新: 2023/03/25, 19:58:09
GETAM Gradient-weighted Element-wise Transformer Attention Map for Weakly-supervised Semantic segmentation
Learning from Pixel-Level Label Noise A NewPerspective for Semi-Supervised SemanticSegmentation

← GETAM Gradient-weighted Element-wise Transformer Attention Map for Weakly-supervised Semantic segmentation Learning from Pixel-Level Label Noise A NewPerspective for Semi-Supervised SemanticSegmentation→

最近更新
01
Structured Knowledge Distillation for Semantic Segmentation
06-03
02
README 美化
05-20
03
常见 Tricks 代码片段
05-12
更多文章>
Theme by Vdoing | Copyright © 2021-2023 Muyun99 | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式
×