Muyun99's wiki Muyun99's wiki
首页
学术搬砖
学习笔记
生活杂谈
wiki搬运
资源收藏
关于
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

Muyun99

努力成为一个善良的人
首页
学术搬砖
学习笔记
生活杂谈
wiki搬运
资源收藏
关于
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • 论文摘抄

  • 论文阅读-图像分类

  • 论文阅读-语义分割

  • 论文阅读-知识蒸馏

  • 论文阅读-Transformer

  • 论文阅读-图卷积网络

  • 论文阅读-弱监督图像分割

    • Awesome weakly supervised semantic segmentation
    • Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation
    • Weakly-Supervised Image Semantic Segmentation Using Graph Convolutional Networks
    • Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation
    • Weakly-Supervised Semantic Segmentation via Sub-category Exploration
    • AffinityNet Learning Pixel level Semantic Affinity with Image level Supervision for Weakly Supervised Semantic Segmentation
    • Grad-CAM Visual Explanations from Deep Networks via Gradient-based Localization
    • Grad-CAM++ Improved Visual Explanations for Deep Convolutional Networks
    • Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised Semantic Segmentation
    • Embedded Discriminative Attention Mechanism for Weakly Supervised Semantic Segmentation
    • Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation
    • Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation
    • NoPeopleAllowed The Three-Step Approach to Weakly Supervised SemanticSegmentation
    • Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations
    • Learning Deep Features for Discriminative Localization
    • Convolutional Random Walk Networks for Semantic Image Segmentation
    • Learning random-walk label propagation for weakly-supervised semantic segmentation
    • Puzzle-CAM Improved localization via matching partial and full features
    • Learning Visual Words for Weakly-Supervised Semantic Segmentation
    • 区域擦除 | Object Region Mining with Adversarial Erasing A Simple Classification to Semantic Segmentation Approach
    • CAM 扩散 | Tell Me Where to Look Guided Attention Inference Network
    • Self-Erasing Network for Integral Object Attention
    • Transformer CAM|Transformer Interpretability Beyond Attention Visualization
    • GETAM Gradient-weighted Element-wise Transformer Attention Map for Weakly-supervised Semantic segmentation
    • Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation
  • 论文阅读-半监督图像分割

  • 论文阅读-带噪学习

  • 论文阅读-小样本学习

  • 论文阅读-自监督学习

  • 语义分割中的知识蒸馏

  • 学术文章搜集

  • 论文阅读-其他文章

  • 学术搬砖
  • 论文阅读-弱监督图像分割
Muyun99
2021-10-13

Learning Deep Features for Discriminative Localization

# Learning Deep Features for Discriminative Localization

# 作者:Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba

# 单位:MIT

# 发表:CVPR 2016

# 摘要

# 阅读

# 论文的目的及结论

# 论文的实验

# 论文的方法

核心代码非常简单, 提取到特征图和目标类别全连接的权重,直接加权求和,再经过relu操作去除负值,最后归一化获取CAM,具体如下:

# 获取全连接层的权重
self._fc_weights = self.model._modules.get(fc_layer).weight.data
# 获取目标类别的权重作为特征权重
weights=self._fc_weights[class_idx, :]
# 这里self.hook_a为最后一层特征图的输出
batch_cams = (weights.unsqueeze(-1).unsqueeze(-1) * self.hook_a.squeeze(0)).sum(dim=0)
# relu操作,去除负值
batch_cams = F.relu(batch_cams, inplace=True)
# 归一化操作
batch_cams = self._normalize(batch_cams)
1
2
3
4
5
6
7
8
9
10

# 论文的背景

# 总结

# 论文的贡献

利用 GAP 获取 CAM 的开山之作

# 论文的不足
# 论文如何讲故事

# 参考资料

  • https://arxiv.org/abs/1512.04150

  • https://github.com/zhoubolei/CAM

    • https://github.com/zhoubolei/CAM/blob/master/pytorch_CAM.py
  • https://cloud.tencent.com/developer/article/1674200

上次更新: 2021/11/03, 23:35:28
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations
Convolutional Random Walk Networks for Semantic Image Segmentation

← Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations Convolutional Random Walk Networks for Semantic Image Segmentation→

最近更新
01
Structured Knowledge Distillation for Semantic Segmentation
06-03
02
README 美化
05-20
03
常见 Tricks 代码片段
05-12
更多文章>
Theme by Vdoing | Copyright © 2021-2023 Muyun99 | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式
×